Standard: 5.14- The student will make predictions and determine the probability of an outcome by constructing a sample space.

What you need to know:

How to:

- Construct a sample space, using a tree diagram to identify all possible outcomes of a single event.
- Construct a sample space, using a list or chart to represent all possible outcomes of a single event.
- Predict and determine the probability of an outcome by constructing a sample space. The sample space will have a total of 24 or less possible outcomes.

Key concepts:

- The probability of an event occurring is represented by a ratio between 0 and 1. An event is
 "impossible" if it has a probability of 0 (e.g., the probability that the month of April will have 31 days). An
 event is "certain" if it has a probability of 1 (e.g., the probability that the sun will rise tomorrow morning).
- The more times an experiment is done, the closer the experimental probability comes to the theoretical probability (e.g., a coin lands heads up half of the time).

Key Vocabulary:

Probability: the ratio of the number of ways an event can occur to the total number of possible outcomes

Probability (red)= <u>number of favorable outcomes (what we want to happen)</u> = <u>1</u> number of possible outcomes (the possible results) 4

Example: The probability of spinning yellow or blue is 2/4.

Outcome: A possible result in an experiment

Example: The possible outcomes are red, yellow, blue, and green

Experiment/trial: any procedure that can be infinitely repeated and has a well-defined set of possible outcomes

Example: Spinning the arrow

Event: a single result of an experiment

Example: I spin a red on my first spin. That is the event. The next spin I get blue. That is another event.

Tree diagram: A diagram used to organize outcomes of an experiment (it is called a tree diagram because it looks like branches)

The outcomes in this tree diagram are: black shirt, black pants; black shirt, jeans; brown shirt, black pants; brown shirt, jeans; white shirt, black pants; white shirt, jeans

Fundamental Counting Principle: describes how to find the number of outcomes when there are multiple choices.

Example: How many different outfit combinations can you make from 3 shirts (black, brown, white) and 2 pants (black pants and jeans)? Take the number of choices of the shirts (3) and multiply it times the number of the pants (2): $3x^2 = 6$

	:	· • · · · · · · · · · · · · · · · · · ·	Probabilit		:y				
					1	:			
k	tle	ss often han not		→ ←	<u></u>	more often than not			
	j.				;	:			
Ò	:	$\frac{1}{4}$		1	÷	3 4	2	i	
0.0	İ	0.25		0.5		0.75		1.0	
0%		25%		50%		75%	20	100%	
impossible	1	unlikely	equ	ally likely	÷	likely	÷	certain	

Likely: Probably will occur

Equally likely: Having the same chance of an outcome occurring, 1/2 (1 out of 2 chance it will happen)

Unlikely: Probably will not occur; only a small chance of happening, less than 1/2

Certain: An event that will always happen, 1 (1 out of 1 chance something will happen

Impossible: An event that will never happen

Sample space: The set of all possible outcomes; may be organized in a list, chart, or tree diagram.

Theoretical probability: A comparison of the number of favorable outcomes to the number of possible equally likely outcomes.

Experimental probability: The number of times the outcome occurs compared to the total number of trials.

Examples and Explanations

The possible **outcomes** of the spinner are GREEN, YELLOW, PURPLE, ORANGE, and RED. There are 5 possible outcomes. The probability of the spinner landing on a particular color can be expressed in words and as a fraction.

Event	Probability		
	Word	Fraction	
Landing on GREEN, YELLOW, PURPLE, ORANGE, or RED.	Certain	1 or <u>5</u> 5	
Landing on any color <i>except</i> GREEN	Likely	$\frac{4}{5}$	
Landing on GREEN as related to landing on RED	Equally likely	$\frac{1}{5}$ $\frac{1}{5}$ and $\frac{1}{5}$	
Landing on ORANGE	Unlikely	$\frac{1}{5}$	
Landing on BROWN	Impossible	0	

For the spinner on the right, the list of possible **outcomes** is: blue, red, yellow, and green. Even though there are two reds and two blues, you do not have to list them twice when listing the outcomes.

The probability of spinning a blue is 2/6 or 2:6.

The probability of spinning a red is 2/6 or 2:6.

The probability of spinning a yellow is 1/6 or 1:6.

The probability of spinning a green is 1/6 or 1:6.

All of the possible outcomes of an experiment are called the **sample space**. A **tree diagram** can be used to determine the sample space. Here is a tree diagram for an experiment involving flipping a coin three times. The tree diagram shows all of the possible outcomes.

First Coin Second Coin Third Coin Outcomes

There are 8 possible outcomes. This is the sample space. An **organized list or chart** can also show the sample space.

1 st Roll	2 nd Roll	3 rd Roll	
Heads	Heads	Heads	
Heads	Heads	Tails	
Heads	Tails	Heads	
Heads	Tails	Tails	
Tails	Tails	Tails	
Tails	Tails	Heads	
Tails	Heads	Tails	
Tails	Heads	Heads	

H, T, T T, T, T T, T, H T, T, H T, H, T T, H, H

H, H, H

H, H, T

Н, Т, Н

Example problem:

Chuck is opening a restaurant and has cheeseburgers and hot dogs on his menu. With those, patrons can choose either fries, onion rings, or chips as a side. How many of the outcomes include both a hot dog and chips?

Step 1: Use the fundamental counting principal to figure out how many total outcomes there will be. 2 sandwiches x 3 sides = 6 outcomes

Step 2: Create a tree diagram of all the possibilities.

Step 3: Figure out how many total possibilities there are (this is the sample space). Use this number as the denominator.

Possibilities (sample space):

Cheeseburger + Fries Cheeseburger + Onion Rings Cheeseburger + Chips Hot dog + Fries Hot dog + Onion Rings Hotdog + Chips

So, there are a total of 6 choices.

Step 4: Check to see how many times the option occurs. There is only one option for hotdog and chips. Use this number as the numerator.

Step 5: Create your fraction and solve the problem.

The outcome of a hot dog with chips is 1/6.

